如图1,直角梯形中,,分别为边和上的点,且,。将四边形沿折起成如图2的位置,使平面和平面所成二面角的大小为, (Ⅰ)求证:直线平面; (Ⅱ)求二面角的大小:
某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出场单价就降低0.02元,根据市场调查,销售商一次订购量不会超过600件.(1)设一次订购x件,服装的实际出厂单价为p元,写出函数p=f(x)的表达式;(2)当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少?
(理科班)(12分)已知R,函数e. (1)若函数f(x)存在极大值,并记为g(m),求g(m)的表达式; (2)当m=0时,求证:.
(理科班)(12分)设函数f(x)=ln(2x+3)+x2(1)讨论f(x)的单调性;(2)求f(x)在区间[-1,0]的最大值和最小值.
求当m为何值时,f(x)=x2+2mx+3m+4.(1)有且仅有一个零点;(2)有两个零点且均比-1大;
已知c>0,设命题p:函数y=cx为减函数,命题q:当x∈[,2]时,函数f(x)=x+>恒成立.如果p或q为真命题,p且q为假命题,求c的取值范围