高考数学试题中共有12道选择题每道选择题都有4个选项,其中有且仅有一个是正确的。评分标准规定:“每题只选1项,答对得5分,不答或答错得0分”,某考生每道题都给出了一个答案,已确定有8道题的答案是正确的,而其余题中,有两道题都可判断出两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只能乱猜,试求出该考生:(Ⅰ)选择题没得60分的概率;(Ⅱ)选择题所得分数的数学期望.( 保留三位有效数字)
如图,已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,侧面PBC⊥底面ABCD,点M在AB上,且,E为PB的中点. (1)求证:CE∥平面ADP; (2)求证:平面PAD⊥平面PAB; (3)棱AP上是否存在一点N,使得平面DMN⊥平面ABCD,若存在,求出的值;若不存在,请说明理由.
已知椭圆:两个焦点之间的距离为2,且其离心率为. (1)求椭圆的标准方程; (2)若为椭圆的右焦点,经过椭圆的上顶点B的直线与椭圆另一个交点为A,且满足,求外接圆的方程.
已知命题:点不在圆的内部,命题:“曲线表示焦点在轴上的椭圆”,命题 “曲线表示双曲线”. (1)若“且”是真命题,求的取值范围; (2)若是的必要不充分条件,求的取值范围.
如图:已知正方形ABCD的边长为2,且AE⊥平面CDE,AD与平面CDE所成角为. (1)求证:AB∥平面CDE; (2)求三棱锥D-ACE的体积.
设命题,命题关于x的方程有实根. (1)若为真命题,求的取值范围; (2)若“”为假命题,且“”为真命题,求的取值范围.