已知定圆圆心为A,动圆M过点B(1,0)且和圆A相切,动圆的圆心M的轨迹记为C.(I)求曲线C的方程;(II)若点为曲线C上一点,求证:直线与曲线C有且只有一个交点.
在如图所示的几何体中,四边形ABCD为矩形,平面ABEF平面ABCD,EF//AB,,AD=2,AB= AF=2EF=l,点P在棱DF上. (1)若P为DF的中点,求证:BF//平面ACP (2)若二面角D-AP-C的余弦值为,求PF的长度.
以下茎叶图记录了甲、乙两名射击运动员训练的成绩(环数),射击次数为4次. (1)试比较甲、乙两名运动员射击水平的稳定性; (2)每次都从甲、乙两组数据中随机各选取一个进行比对分析,共选取了4次(有放回选取).设选取的两个数据中甲的数据大于乙的数据的次数为,求的分布列及数学期望.
已知 ,,记函数 (1)求函数取最大值时的取值集合; (2)设的角所对的边分别为,若a=2csinA,c=,且△ABC的面积为,求a+b的值.
已知圆的参数方程为,(为参数),直线的参数方程为,(为参数). (1)求圆的极坐标方程; (2)直线与圆交于两点,求线段的长.
已知函数,在点处的切线方程为. (1)求函数的解析式; (2)若对任意的,恒成立,求实数的取值范围.