已知椭圆的左、右焦点分别为,且经过定点,为椭圆上的动点,以点为圆心,为半径作圆.(1)求椭圆的方程;(2)若圆与轴有两个不同交点,求点横坐标的取值范围;(3)是否存在定圆,使得圆与圆恒相切?若存在,求出定圆的方程;若不存在,请说明理由.
已知函数. (Ⅰ)求的单调区间; (Ⅱ)是否存在实数,使得函数的极大值等于?若存在,求出的值;若不存在,请说明理由.
某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是,样本数据分组为,,,,. (Ⅰ)求直方图中的值; (Ⅱ)如果上学所需时间不少于1小时的学生可申请在学校住宿,请估计学校600名新生中有多少名学生可以申请住宿; (Ⅲ)从学校的新生中任选4名学生,这4名学生中上学所需时间少于20分钟的人数记为,求的分布列和数学期望.(以直方图中新生上学所需时间少于20分钟的频率作为每名学生上学所需时间少于20分钟的概率)
在四棱锥中,//,,,平面,. (Ⅰ)设平面平面,求证://; (Ⅱ)求证:平面; (Ⅲ)设点为线段上一点,且直线与平面所成角的正弦值为,求的值.
在中,角,,的对边分别为,且,,成等差数列. (Ⅰ)若,,求的值; (Ⅱ)设,求的最大值.
已知各项均为非负整数的数列,满足,.若存在最小的正整数,使得,则可定义变换,变换将数列变为数列.设,. (Ⅰ)若数列,试写出数列;若数列,试写出数列; (Ⅱ)证明存在唯一的数列,经过有限次变换,可将数列变为数列; (Ⅲ)若数列,经过有限次变换,可变为数列.设,,求证,其中表示不超过的最大整数.