同时抛掷甲、乙两颗质地均匀的骰子(六个面上分别刻有1,2,3,4,5,6六个数字的正方体)。(1)若甲上的数字为十位数,乙上的数字为个位数,问可以组成多少个不同的数,其中个位数字与十位数字均相同的数字的概率是多少?(2)两个玩具的数字之和共有多少种不同结果?其中数字之和为12的有多少种情况?数字之和为6的共有多少种情况?分别计算这两种情况的概率。
如图6所示,等边三角形OAB的边长为8,且其三个顶点均在抛物线E:x2=2py(p>0)上. 图6 (1)求抛物线E的方程; (2)设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q,证明以PQ为直径的圆恒过y轴上某定点.
如图,直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=,AA′=1,点M,N分别为A′B和B′C′的中点. (1)证明:MN∥平面A′ACC′; (2)求三棱锥A′-MNC的体积. (锥体体积公式V=Sh,其中S为底面面积,h为高)
某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100]. (1)求图中a的值; (2)根据频率分布直方图,估计这100名学生语文成绩的平均分; (3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.
已知函数(其中,,)的部分图象如图所示. (1)求,,的值; (2)已知在函数图象上的三点的横坐标分别为,求的值.
数列对任意,满足. (1)求数列通项公式; (2)若,求的通项公式及前项和.