在正方体ABCD—A1B1C1D1中(1)求证: BD⊥平面ACC1(2)求二面角C1—BD—C的正切值
已知平面向量,,,其中,且函数的图象过点. (1)求的值; (2) 将函数图象上各点的横坐标变为原来的的2倍,纵坐标不变,得到函数的图象,求函数在上的最大值和最小值.
已知. (1)求;(2)判断的奇偶性与单调性; (3)对于,当,求m的集合M。
设, (1)若,求a的值;(2)若,求a的值; (3)是否存在实数a使,若存在,求a的值。若不存在,请说明理由。
已知幂函数为偶函数,在区间上是单调增函数, (1)求函数的解析式; (2)设函数,若恒成立,求实数q的取值范围。
为了预防流感,某学校对教室用药熏消毒法进行消毒。已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为为常数),如图所示。 (1)请写出从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式; (2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过多少小时后,学生才能回到教室。