已知是△的两个内角,向量,若. (Ⅰ)试问是否为定值?若为定值,请求出;否则请说明理由;(Ⅱ)求的最大值,并判断此时三角形的形状.
过轴上动点引抛物线的两条切线、,、为切点,设切线、的斜率分别为和. (Ⅰ)求证:; (Ⅱ)求证:直线恒过定点,并求出此定点坐标;
已知数列满足:,数列满足:,,数列的前项和为. (Ⅰ)求证:数列为等比数列; (Ⅱ)求证:数列为递增数列; (Ⅲ)若当且仅当时,取得最小值,求的取值范围.
如图,已知中,,平面,是的中点. (Ⅰ)若是的中点,求证:平面平面; (Ⅱ)若,求平面与平面所成的锐二面角的大小.
已知函数. (Ⅰ)求函数在上的最小值; (Ⅱ)若存在使不等式成立,求实数的取值范围.
(本小题满分14分)对于函数,若存在,使,则称是的一个不动点,已知函数, (1)当时,求函数的不动点; (2)对任意实数,函数恒有两个相异的不动点,求的取值范围; (3)在(2)的条件下,若的图象上两点的横坐标是的不动点,且两点关于直线对称,求的最小值