(本小题满分12分)标准椭圆的两焦点为,在椭圆上,且. (1)求椭圆方程;(2)若N在椭圆上,O为原点,直线的方向向量为,若交椭圆于A、B两点,且NA、NB与轴围成的三角形是等腰三角形(两腰所在的直线是NA、NB),则称N点为椭圆的特征点,求该椭圆的特征点.
如图,在中,是的角平分线,的外接圆交于,. (1)求证:; (2)当时,求的长.
若,其中. (1)当时,求函数在区间上的最大值; (2)当时,若恒成立,求的取值范围.
已知椭圆的离心率为,直线与以原点为圆心、以椭圆的短半轴长为半径的圆相切. (1)求椭圆的方程; (2)设椭圆的左焦点为,右焦点为,直线过点,且垂直于椭圆的长轴,动直线垂直于,垂足为点,线段的垂直平分线交于点,求点的轨迹的方程; (3)设与轴交于点,不同的两点在上(与也不重合),且满足,求的取值范围.
已知在四棱锥中,底面是矩形,平面,,,分别是的中点. (1)求证:平面; (2)求二面角的余弦值.
某网站用“10分制”调查一社区人们的幸福度.现从调查人群中随机抽取16名,以下茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶): (1)若幸福度不低于9.5分,则称该人的幸福度为“极幸福”,求从这16人随机选取3人,至多有1人是“极幸福”的概率; (2)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记表示抽到“极幸福”的人数,求的分布列及数学期望.