(12分)古代印度婆罗门教寺庙内的僧侣们曾经玩过一种被称为“河内宝塔问题”的游戏,其玩法如下:如图,设有个圆盘依其半径大小,大的在下,小的在上套在柱上,现要将套在柱上的盘换到柱上,要求每次只能搬动一个,而且任何时候不允许将大盘套在小盘上面,假定有三根柱子可供使用.现用表示将个圆盘全部从柱上移到柱上所至少需要移动的次数,回答下列问题:(1)写出 并求出(2)记 求和(其中表示所有的积的和)(3)证明:
如图,已知AB平面ACD,DE∥AB,△ACD是正三角形,,且F是CD的中点. (Ⅰ)求证AF∥平面BCE; (Ⅱ)设AB=1,求多面体ABCDE的体积.
在等差数列中,,其前项和为,等比数列的各项均为正数,,公比为,且,.(Ⅰ)求与;(Ⅱ)设数列满足,求的前项和.
(本小题满分12分) 已知函数(是自然对数的底数,). (1)当时,求的单调区间; (2)若在区间上是增函数,求实数的取值范围; (3)证明对一切恒成立.
(本小题满分12分) 已知椭圆的离心率为,直线经过椭圆的上顶点和右顶点,并且和圆相切. (1)求椭圆的方程; (2)设直线与椭圆相交于,两点,以线段, 为邻边作平行四边行,其中顶点在椭圆上,为坐标原点,求的取值范围.
(本小题满分12分) 已知数列的前n项和为,且(), (1)求证:数列是等比数列; (2)设数列的前n项和为,,试比较与的大小.