(本小题满分12分)已知函数 (是自然对数的底数,).(1)当时,求的单调区间;(2)若在区间上是增函数,求实数的取值范围;(3)证明对一切恒成立.
在△ABC中,角A,B,C所对的边分别为a,b,c,且cosA=.(1)求sin2 -cos 2A的值.(2)若a=,求bc的最大值.
在△ABC中,a,b,c分别为内角A,B,C所对的边长,a=,b=,1+2cos(B+C)=0,求边BC上的高.
在△ABC中,a,b,c分别为角A,B,C的对边.已知a=1,b=2,sinC=(其中C为锐角).(1)求边c的值.(2)求sin(C-A)的值.
已知函数f(x)=sinωx·sin(-φ)-sin(+ωx)sin(π+φ)是R上的偶函数.其中ω>0,0≤φ≤π,其图象关于点M(,0)对称,且在区间[0,]上是单调函数,求φ和ω的值.
设函数f(x)=msinx+cosx(x∈R)的图象经过点(,1).(1)求f(x)的解析式,并求函数的最小正周期.(2)若f(α+)=且α∈(0,),求f(2α-)的值.