F1、F2为双曲线的左右焦点,O为坐标原点,P在双曲线的左支上,点M在右准线上,且满足:,(λ>0)(1)求此双曲线的离心率;(2)若过点N(,)的双曲线C的虚轴端点分别为B1、B2(B1在y轴正半轴上),点A、B在双曲线上,且,,求双曲线C和直线AB的方程。
(示范性高中做)已知数列的首项前项和为,且(Ⅰ)求数列的通项公式;(Ⅱ)令,求数列的前n项和.
(普通高中做)已知等差数列中,为的前项和,.(Ⅰ)求的通项与; (Ⅱ)当为何值时,为最大?最大值为多少?
(本小题满分12分)已知直线l过点P(1,1),并与直线l1:x-y+3=0和l2:2x+y-6=0分别交于点A、B,若线段AB被点P平分,求:(Ⅰ)直线l的方程; (Ⅱ)以O为圆心且被l截得的弦长为的圆的方程.
(示范性高中做)某公司计划在甲、乙两个仓储基地储存总量不超过300吨的一种紧缺原材料,总费用不超过9万元,此种原材料在甲、乙两个仓储基地的储存费用分别为元/吨和200元/吨,假定甲、乙两个仓储基地储存的此种原材料每吨能给公司带来的收益分别为0.3万元和0.2万元 问该公司如何分配在甲、乙两个仓储基地的储存量,才能使公司的收益最大,最大收益是多少万元?
(本小题满分12分)(普通高中做)画出不等式组所表示的平面区域(用阴影表示).若目标函数,求z的最大值.