设函数(1)求函数的单调区间;(2)求在[—1,2]上的最小值;(3)当时,用数学归纳法证明:
设一动直线过定点A(2, 0)且与抛物线相交于B、C两点,点 B、C在轴上的射影分别为, P是线段BC上的点,且适合,求的重心Q的轨迹方程,并说明该轨迹是什么图形.
抛物线的焦点弦AB,求的值.
已知梯形ABCD中,,点E分有向线段所成的比为,双曲线过C、D、E三点,且以A、B为焦点,当时,求双曲线离心率的取值范围.
M为双曲线上异于顶点的任一点,双曲线的焦点为,设,求的值.
以圆锥曲线的焦点弦AB为直径作圆,与相应准线有两个不同的交点,求证:①这圆锥曲线一定是双曲线;②对于同一双曲线, 截得圆弧的度数为定值.