(本题满分13分)如图,棱柱ABCD—A1B1C1D1的所有棱长都等于2,∠ABC=60°,平面AA1C1C⊥平面ABCD,∠A1AC=60°. (Ⅰ)证明:BD⊥AA1; (Ⅱ)求二面角D—A1A—C的平面角的余弦值; (Ⅲ)在直线CC1上是否存在点P,使BP//平面DA1C1?若存在,求出点P的位置;若不存在,说明理由.
如下图所示,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1;(3)求异面直线AC1与B1C所成角的余弦值.
如图所示,已知在圆锥SO中,底面半径r=1,母线长l=4,M为母线SA上的一个点,且SM=x,从点M拉一根绳子,围绕圆锥侧面转到点A,求:(1)设f(x)为绳子最短长度的平方,求f(x)表达式;(2)绳子最短时,顶点到绳子的最短距离;(3)f(x)的最大值.
如图,△ABC中,AC=BC=AB,ABED是边长为1的正方形,EB⊥底面ABC,若G,F分别是EC,BD的中点.(1)求证:GF∥底面ABC;(2)求证:AC⊥平面EBC;
圆柱的高是8 cm,表面积是130 π cm2,求它的底面圆半径和体积.
已知数列满足 ()且(1)求的值(2)求的通项公式(3)令,求的最小值及此时的值