等比数列 { a n } 的前 n 项和为 S n ,已知对任意的 n ∈ N + ,点 ( n , S n ) ,均在函数 y = b x + γ ( b > 0 且 b ≠ 1 , b , γ 均为常数)的图像上. (1)求 γ 的值; (11)当 b = 2 时,记 b n = n + 1 4 a n ( n ∈ N + ) ,求数列 { b n } 的前 n 项和 T n .
各项为正的数列满足,,(1)取,求证:数列是等比数列,并求其公比;(2)取时令,记数列的前项和为,数列的前项之积为,求证:对任意正整数,为定值.
函数,(1)若时,求的最大值;(2)设时,若对任意,都有恒成立,且的最大值为2,求的表达式.
已知椭圆,离心率,且过点,(1)求椭圆方程;(2)以为直角顶点,边与椭圆交于两点,求 面积的最大值.
如图,已知平面,为等边三角形,(1)若平面平面,求CD长度;(2)求直线AB与平面ADE所成角的取值范围.
在中,角A,B,C所对的边分别为a,b,c, 已知a,b,c成等比数列,且.(Ⅰ)求角B的大小;(Ⅱ)若,求的面积最大值.