设是一个离散型随机变量,其分布列如下表,求值,并求.
(本小题满分13分) 已知函数,且对于任意实数,恒有.(1)求函数的解析式;(2)已知函数在区间上单调,求实数的取值范围;(3)若函数有2个零点?求的取值范围.
(本小题满分12分)已知数列为等差数列,其前项和为,且,(1)求;(2)若对任意,,都有求的最小值。
(本小题满分12分)已知直角梯形中,过作,垂足为,的中点,现将沿折叠,使得,(1)求证:;(2)设四棱锥D-ABCE的体积为V,其外接球体积为,求V的值.
(本小题满分12分)已知集合,.(1)在区间上任取一个实数,求“”的概率;(2)设为有序实数对,其中是从集合中任取的一个整数,是从集合中任取的一个整数,求“”的概率.
(本小题满分12分)在中,内角所对边长分别为,,,.(1)求的最大值及的取值范围;(2)求函数的最值.