有甲、乙两个工厂,甲厂位于一直线河岸的岸边A处,乙厂与甲厂在河的同侧,乙厂位于离河岸40km的B处,乙厂到河岸的垂足D与A相距50km,两厂要在此岸边合建一个供水站C,从供水站到甲厂和乙厂的水管费用分别为每千米3a元和5a元,问供水站C建在岸边何处才能使水管费用最省?
(本小题满分12分) 已知三棱柱中,三个侧面均为矩形,底面为等腰直角三角形, ,点为棱的中点,点在棱上运动. (1)求证; (II)当点运动到某一位置时,恰好使二面角的平面角的余弦值为,求点到平面的距离; (III)在(II)的条件下,试确定线段上是否存在一点,使得平面?若存在,确定其位置;若不存在,说明理由.
(本小题满分12分) 等边和梯形所在的平面相互垂直,∥,,,为棱的中点,∥平面. (I)求证:平面平面; (II)求二面角的正弦值.
本小题满分12分) 数列中,,其前项和为,,且. (I)求数列的通项公式; (II)设,求数列的前项和.
已知数列{an}中,a1=1,a2=2,且an+1=(1+q)an-qan-1(n≥2,q≠0). (1)设bn=an+1-an(n∈N*),证明{bn}是等比数列; (2)求数列{an}的通项公式; (3)若a3是a6与a9的等差中项,求q的值,并证明:对任意的n∈N*,an是an+3与an+6的等差中项.
(本小题满分12分) 已知{an}是各项均为正数的等比例数列,且 (Ⅰ)求{an}的通项公式; (Ⅱ)设,求数列{bn}的前N项和Tn。