有甲、乙两个工厂,甲厂位于一直线河岸的岸边A处,乙厂与甲厂在河的同侧,乙厂位于离河岸40km的B处,乙厂到河岸的垂足D与A相距50km,两厂要在此岸边合建一个供水站C,从供水站到甲厂和乙厂的水管费用分别为每千米3a元和5a元,问供水站C建在岸边何处才能使水管费用最省?
(本题12分)已知,解关于的不等式.
(本题10分)已知是各项均为正数的等比数列,且,;(1)求的通项公式;(2)设,求数列的前项和.
(本题满分14分)若定义在上的函数同时满足下列三个条件:①对任意实数均有成立;②;③当时,都有成立。(1)求,的值;(2)求证:为上的增函数(3)求解关于的不等式.
(本题满分12分)某网民用电脑上因特网有两种方案可选:一是在家里上网,费用分为通讯费(即电话费)与网络维护费两部分。现有政策规定:通讯费为0.02元/分钟,但每月30元封顶(即超过30元则只需交30元),网络维护费1元/小时,但每月上网不超过10小时则要交10元;二是到附近网吧上网,价格为1.5元/小时。(1)将该网民在某月内在家上网的费用(元)表示为时间(小时)的函数;(2)试确定在何种情况下,该网民在家上网更便宜?
(本题满分12分)二次函数f(x)的最小值为1,且f(0)=f(2)=3.(1)求f(x)的解析式;(2)若f(x)在区间[2a,a+1]上不单调,求a的取值范围.