有甲、乙两个工厂,甲厂位于一直线河岸的岸边A处,乙厂与甲厂在河的同侧,乙厂位于离河岸40km的B处,乙厂到河岸的垂足D与A相距50km,两厂要在此岸边合建一个供水站C,从供水站到甲厂和乙厂的水管费用分别为每千米3a元和5a元,问供水站C建在岸边何处才能使水管费用最省?
(1)已知,若关于不等式的解集为空集,求的取值范围;(2) 已知,且,求证:
在直角坐标系中,直线的参数方程为为参数),若以O点为极点,轴正半轴为极轴建立极坐标系,则曲线C的极坐标方程为。(1)求曲线C的直角坐标方程及直线的普通方程;(2)将曲线C上各点的横坐标缩短为原来的,再将所得曲线向左平移1个单位,得到曲线,求曲线上的点到直线的距离的最小值
如图,AB是圆O的直径,弦BD、CA的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1);(2)AB2=BE•BD-AE•AC.
已知函数为自然对数的底数),。(1)当时,求函数的单调区间和极值;(2)已知函数在上为增函数,且,若在上至少存在一个实数,使得成立,求的取值范围。
已知椭圆上的点到两个焦点的距离之和为,短轴长为,直线与椭圆C交于M、N两点。 (1)求椭圆C的方程; (2)若直线与圆相切,证明:为定值