(本小题满分13分) 某种家用电器每台的销售利润与该电器的无故障使用时间 (单位:年)有关. 若,则销售利润为元;若,则销售利润为元;若,则销售利润为元.设每台该种电器的无故障使用时间,及这三种情况发生的概率分别为,,,叉知,是方程的两个根,且 (1)求,,的值; (2)记表示销售两台这种家用电器的销售利润总和,求的期望.
某校高三年级文科学生600名,从参加期末考试的学生中随机抽出某班学生(该班共50名同学),并统计了他们的数学成绩(成绩均为整数且满分为150分),数学成绩分组及各组频数如下表:
(1)写出a、b的值; (2)估计该校文科生数学成绩在120分以上学生人数; (3)该班为提高整体数学成绩,决定成立“二帮一”小组,即从成绩在[135,150]中选两位同学,来帮助成绩在[45,60)中的某一位同学.已知甲同学的成绩为56分, 乙同学的成绩为145分,求甲乙在同一小组的概率.
在数列中,, (1)求数列的通项; (2)若存在,使得成立,求实数的最小值.
已知函数 (1)当时,求函数取得最大值和最小值时的值; (2)设锐角△ABC的内角A、B、C的对应边分别是a,b,c,且a=1,c∈N*,若向量与向量平行,求c的值.
设函数(为自然对数的底数), (1)证明:; (2)当时,比较与的大小,并说明理由; (3)证明:().
设椭圆E中心在原点,焦点在x轴上,短轴长为4,点Q(2,)在椭圆上. (1)求椭圆E的方程; (2)设动直线L交椭圆E于A、B两点,且,求△OAB的面积的取值范围. (3)过M()的直线:与过N()的直线:的交点P()在椭圆E上,直线MN与椭圆E的两准线分别交于G,H两点,求的值.