如图所示,正方体ABCD-A1B1C1D1中,E、F分别是AB、BC的中点,G为DD1上一点,且D1G:GD=1:2,AC∩BD=O,求证:平面AGO//平面D1EF.
解答题(本题共10分.请写出文字说明, 证明过程或演算步骤): 已知是椭圆上一点,,是椭圆的两焦点,且满足 (Ⅰ)求椭圆方程; (Ⅱ)设、是椭圆上任两点,且直线、的斜率分别为、,若存在常数使,求直线的斜率.
填空题(本大题有2小题,每题5分,共10分.请将答案填写在答题卷中的横线上): (Ⅰ)函数的最小值为. (Ⅱ)若点在曲线上,点在曲线上,点在曲线上,则的最大值是.
(本题满分12分) 已知椭圆的中心在原点,焦点在坐标轴上,直线与该椭圆相交于和,且,,求椭圆的方程.
(本题满分10分) 已知四棱锥的底面为直角梯形,//,,底面,且. (Ⅰ)证明:平面; (Ⅱ)求二面角的余弦值的大小.
(本题满分10分) 求圆心在直线上,且经过圆与圆的交点的圆方程.