在直角坐标系 x O y 中,椭圆 C 1 : x 2 a 2 + y 2 b 2 = 1 a > b > 0 的左、右焦点分别为 F 1 , F 2 . F 2 也是抛物线 C 2 : y 2 = 4 x 的焦点,点 M 为 C 1 与 C 2 在第一象限的交点,且 M F 2 = 5 3 . (Ⅰ)求 C 1 的方程; (Ⅱ)平面上的点 N 满足 M N ⇀ = M F 1 ⇀ + M F 2 ⇀ ,直线 l ∥ M N ,且与 C 1 交于 A , B 两点,若 O A ⇀ · O B ⇀ = 0 ,求直线 l 的方程.
(1)计算: (2)计算:
(本小题满分14分)若集合具有以下性质: ①,; ②若,则,且时,. 则称集合是“好集”. (Ⅰ)分别判断集合,有理数集是否是“好集”,并说明理由; (Ⅱ)设集合是“好集”,求证:若,则; (Ⅲ)对任意的一个“好集”,分别判断下面命题的真假,并说明理由. 命题:若,则必有; 命题:若,且,则必有;
(本小题满分13分)已知椭圆:的右焦点为,离心率为. (Ⅰ)求椭圆的方程及左顶点的坐标; (Ⅱ)设过点的直线交椭圆于两点,若的面积为,求直线的方程.
(本小题满分13分)已知函数,其中是常数. (Ⅰ)当时,求在点处的切线方程; (Ⅱ)求在区间上的最小值.
(本小题满分13分)在四棱锥中,底面是菱形,. (Ⅰ)若,求证:平面; (Ⅱ)若平面平面,求证:; (Ⅲ)在棱上是否存在点(异于点)使得∥平面,若存在,求的值;若不存在,说明理由.