(本小题满分13分)甲、乙、丙三人参加了一家公司招聘面试,甲表示只要面试合格就签约;乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约,设每人面试合格的概率都是,且面试是否合格互不影响。(1)求至少有一人面试合格的概率;(2)求签约人数的分布列和数学期望;
已知函数,(1)当t=1时,求曲线处的切线方程;(2)当t≠0时,求的单调区间;(3)证明:对任意的在区间(0,1)内均存在零点。
已知向量,(1)求的最大值和最小值;(2)若,求k的取值范围。
在锐角三角形ABC中,已知角A、B、C所对的边分别为a、b、c,且,(1)若c2=a2+b2—ab,求角A、B、C的大小;(2)已知向量的取值范围。
已知等差数列{an}中,a3=-4,a1+a10=2,(1)求数列{an}的通项公式;(2)若数列{bn}满足an=log3bn,设Tn=b1·b2……bn,当n为何值时,Tn>1。
设函数是奇函数(a,b,c都是整数),且,(1)求a,b,c的值;(2)当x<0,的单调性如何?用单调性定义证明你的结论。