某单位为绿化环境,移栽了甲、乙两种大树各2株。设甲、乙两种大树移栽的成活率分别为 5 6 和 4 5 ,且各株大树是否成活互不影响。求移栽的4株大树中: (Ⅰ)至少有1株成活的概率; (Ⅱ)两种大树各成活1株的概率。
已知椭圆的离心率为,短轴一个端到右焦点的距离为.(Ⅰ)求椭圆C的方程:(Ⅱ)设直线与椭圆C交于A、B两点,坐标原点O到直线的距离为,求△AOB面积的最大值.
如图所示,在直三棱柱中,,为的中点.(Ⅰ) 若AC1⊥平面A1BD,求证:B1C1⊥平面ABB1A1;(Ⅱ)在(Ⅰ)的条件下,设AB=1,求三棱锥的体积.
在等差数列和等比数列中,a1=2, 2b1=2, b6=32, 的前20项和S20=230.(Ⅰ)求和;(Ⅱ)现分别从和的前4中各随机抽取一项,写出相应的基本事件,并求所取两项中,满足an>bn的概率.
已知函数为偶函数,周期为2.(Ⅰ)求的解析式;(Ⅱ)若的值.
设函数f(x)=.(Ⅰ)当a=-5时,求函数f(x)的定义域;(II)若函数f(x)的定义域为R,试求a的取值范围.