在直角坐标系中,△OAB的顶点坐标O(0 , 0),A(2, 0),B(1, ),求△OAB在矩阵MN的作用下变换所得到的图形的面积,其中矩阵M = ,N = .
(本小题满分13分)已知函数. (1)求函数的最小正周期和单调递增区间; (2)若在中,角,,的对边分别为,,,,为锐角,且,求面积的最大值.
(本小题满分14分)已知a>0,函数. (1)讨论函数f(x)的单调性; (2)当函数f(x)存在极值时,设所有极值之和为g(a),求g(a)的取值范围.
(本小题满分12分)椭圆过点,离心率为,左右焦点分别为,过点的直线交椭圆于两点。 (1)求椭圆的方程; (2)当的面积为时,求的方程.
(本小题满分12分)某学校有男老师45名,女老师15名,按照分层抽样的方法组建了一个4人的学科攻关小组。 (1)求某老师被抽到的概率及学科攻关小组中男、女老师的人数; (2)经过一个月的学习、讨论,这个学科攻关小组决定选出2名老师做某项实验,方法是先从小组里选出1名老师做实验,该老师做完后,再从小组内剩下的老师中选1名做实验,求选出的2名老师中恰有1名女老师的概率.
(本题12分)如图,在四棱锥E-ABCD中,AB⊥平面BCE,DC⊥平面BCE,AB=BC=CE=2CD=2,; (1)求证:平面ADE⊥平面ABE; (2)求三棱锥A-BDE的体积.