已知函数。(1)若,证明:;(2)若不等式对时恒成立,求实数的取值范围。
已知函数在处有极大值8,求实数的值.
已知命题;命题,若为真命题,求的取值范围.
一条斜率为1的直线与离心率为的椭圆:()交于两点,直线与轴交于点,且,,求直线和椭圆的方程.
已知,设命题函数在R上单调递增;命题不等式对恒成立。若为假,为真,求的取值范围.
如图,已知是椭圆上且位于第一象限的一点,是椭圆的右焦点,是椭圆的中心,是椭圆的上顶点,是直线(是椭圆的半焦距)与轴的交点,若,,试求椭圆的离心率的平方的值.