已知函数f(x)=alnx+bx,且f(1)=-1,f′(1)=0,⑴求f(x);⑵求f(x)的最大值;⑶若x>0,y>0,证明:lnx+lny≤.本题主要考查函数、导数的基本知识、函数性质的处理以及不等式的综合问题,同时考查考生用函数放缩的方法证明不等式的能力.
(本题满分12分,第(Ⅰ)问6分,第(Ⅱ)问6分)已知函数 (Ⅰ)当时,求的最小值; (Ⅱ)若函数在区间(0,1)上为单调函数,求实数的取值范围
(本题满分12分,第(Ⅰ)问6分,第(Ⅱ)问6分)如图一,是正三角形,是等腰直角三角形,.将沿折起,使得, 如图二,为的中点 (Ⅰ)求证:; (Ⅱ)求的面积; (Ⅲ)求三棱锥的体积.
(本题满分13分,第(Ⅰ)问6分,第(Ⅱ)问7分)已知椭圆及直线:. (Ⅰ)当直线和椭圆有公共点时,求实数的取值范围. (Ⅱ)求直线被椭圆截得的最长弦所在的直线方程.
(本题满分13分,第(Ⅰ)7分,第(Ⅱ)问6分)已知函数. (Ⅰ)求函数f(x)的递减区间. (Ⅱ)讨论函数f(x)的极值情况,如有,求出极值.
(本题满分13分,第(Ⅰ)问4分,第(Ⅱ)问4分, 第(Ⅲ)问5分) 甲、乙 两人独立地破译一个密码,他们能译出密码的概率分别为,求: (Ⅰ)两个人都能译出密码的概率; (Ⅱ)恰有一个人译出密码的概率; (Ⅲ)至多有一个人译出密码的概率.