如图a—l—是120°的二面角,A,B两点在棱上,AB=2,D在内,三角形ABD是等腰直角三角形,∠DAB=90°,C在内,ABC是等腰直角三角形∠ACB=(I) 求三棱锥D—ABC的体积;(2)求二面角D—AC—B的大小; (3)求异面直线AB、CD所成的角.
已知函数是奇函数,并且函数的图象经过点(1,3). (1)求实数的值; (2)求函数的值域.
已知f(x)是实数集R上的函数,且对任意xR,f(x)=f(x+1)+f(x-1)恒成立. (1)求证:f(x)是周期函数. (2)已知f(-4)=2,求f(2012).
盒子内有大小相同的9个球,其中2个红色小球,3个白色小球,4个黑色小球,规定取出1红色小球得到1分, 取出1白色小球得到0分, 取出1个黑色小球得到-1分,现从盒子中任取3个小球。 (1)求取出的3个球颜色互不相同的概率; (2)求取出的3个球得分之和恰好为1分的概率; (3)设ξ为取出的3个球中白色球的个数,求ξ的分布列及数学期望.
已知等比数列中,为前项和且,, (1)求数列的通项公式。 (2)设,求的前项和的值。
已知函数,在处取得极小值。求a+b的值