某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图1所示的一条折线表示,西红柿的种植成本与上市时间的关系用图2所示的抛物线表示。(注:市场售价和种植成本的单位:元/kg,时间单位:天)(1)写出图1表示的市场售价与时间的函数关系式;写出图2表示的种植成本与时间的函数关系式;(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?为多少?
(本小题满分14分)已知函数. (1)求的定义域; (2)在函数的图像上是否存在不同的两点,使过此两点的直线平行于轴; (3)当满足什么关系时,在上恒取正值.
(本小题满分12分) 某化工厂生产一种溶液,按市场要求,杂质含量不能超过0.1%,若最初时含杂质2%,每过滤一次可使杂质含量减少,问至少应过滤几次才能使产品达到市场要求? (已知,)
(本小题满分12分)如图,棱长为1的正方体中, (1)求证:; (2) 求三棱锥的体积.
(本小题满分12分)已知函数. (1)判断的奇偶性,并证明你的结论; (2)证明:函数在内是增函数.
如图所示,设计一个四棱锥形冷水塔塔顶,四棱锥的底面是正方形,侧面是全等的等腰三角形,已知底面边长为2m,高为m,制造这个塔顶需要多少铁板?