如图,在四棱锥 P - A B C D 中,底面 A B C D 是矩形,已知 A B = 3 , A D = 2 , P A = 2 , P D = 2 2 , ∠ P A B = 60 ° .
(1)证明: A D ⊥ 平面 P A B ; (2)求异面直线 P C 与 A D 所成的角的大小; (3)求二面角 P - B D - A 的大小.
(本题12分)已知椭圆的中心在原点,左焦点为,右顶点为,设点.(1)求该椭圆的标准方程; (2)若是椭圆上的动点,过P点向椭圆的长轴做垂线,垂足为Q求线段PQ的中点的轨迹方程;
本题10分)双曲线的离心率等于4,且与椭圆有相同的焦点,求此双曲线方程.
选修4—5;不等式选讲.设函数. (Ⅰ)解不等式; (Ⅱ)对于实数,若,求证.
)选修4—4;坐标系与参数方程. 已知直线为参数), 曲线(为参数). (Ⅰ)设与相交于两点,求; (Ⅱ)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线的距离的最小值.
选修4—1:几何证明选讲 如图,是圆的内接四边形,,过点的圆的切线与的延长线交于点,证明: (Ⅰ); (Ⅱ).