如图,在四棱锥 P - A B C D 中,底面 A B C D 是矩形,已知 A B = 3 , A D = 2 , P A = 2 , P D = 2 2 , ∠ P A B = 60 ° .
(1)证明: A D ⊥ 平面 P A B ; (2)求异面直线 P C 与 A D 所成的角的大小; (3)求二面角 P - B D - A 的大小.
已知的导数,且,求不等式的解集.
已知,,又,且,.求
已知数列,其中,;等差数列,其中,. (1)求数列的通项公式. (2)在数列中是否存在一项(为正整数),使得 ,,成等比数列,若存在,求的值;若不存在,说明理由.
建造一个容积为18立方米,深为2米的长方体有盖水池。如果池底和池壁每平方米的造价分别是200元和150元,那么如何建造,池的造价最低,为多少?
已知数列、满足,是首项为1,公差为1的等差数列. (1)求数列的通项公式;(2)求数列的通项公式;(3)求数列的前项和.