四棱锥P—ABCD中,PA⊥面ABCD,PA=AB=BC=2,E为PA中点,过E作平行于底面的面EFGH分别与另外三条侧棱交于F,G,H,已知底面ABCD为直角梯形,AD//BC,AB⊥AD,∠BCD=135°(1)求异面直线AF,BG所成的角的大小;(2)设面APB与面CPD所成的锐二面角的大小为θ,求cosθ.
(本小题满分12分)已知椭圆>>的离心率为,以坐标原点为圆心,椭圆的短半轴长为半径的圆与直线相切。(1)求椭圆C的标准方程;(2)设点,是椭圆C上关于轴对称的任意两个不同的点,连结交椭圆于另一点,证明:直线与轴相交于定点.
(本小题满分12分)已知函数经过点,且在该点处的切线与轴平行(1)求的值;(2)若,其中,讨论函数的单调区间.
(本小题满分12分)如图所示的长方体中,底面是边长为的正方形,为与的交点,, 为线段的中点。(1)求证:平面;(2)求三棱锥的体积。
(本小题满分12分)2015年7月16日,电影《捉妖记》上映,上映至今全国累计票房已超过20亿。某影院为了解观看此部电影的观众年龄的情况,在某场次的100名观众中随机调查了20名观众,已知抽到的观众年龄可分成5组:,,,,,根据调查结果得出年龄情况残缺的频率分布直方图如下图所示。(1)根据已知条件,补充画完整频率分布直方图,并估计该电影院观看此部电影的观众年龄的平均数;(2)现在从年龄属于和的两组中随机抽取2人,求他们属于同一年龄组的概率。
(本小题满分12分)已知的三内角,所对三边分别为,且(1)求的值;(2)若的面积求的值.