设数列{an}的首项a1∈(0,1),,n=2,3,4,….(Ⅰ)求{an}的通项公式;(Ⅱ)设,证明bn<bn+1,其中n为正整数.
已知数列的前n项和为Sn,且. (1)求数列的通项; (2)设,求.
在10件产品中,有3件一等品,4件二等品,3件三等品。从这10件产品中任取3件,求: (I) 取出的3件产品中一等品件数X的分布列和数学期望; (II) 取出的3件产品中一等品件数多于二等品件数的概率。
已知数列的前项和为,点均在函数的图象上 (1)求数列的通项公式 (2)若数列的首项是1,公比为的等比数列,求数列的前项和.
函数是的导函数. (Ⅰ)求函数的最大值和最小正周期; (Ⅱ)若的值.
(本小题满分14分)给定函数 (1)试求函数的单调减区间; (2)已知各项均为负的数列满足,求证:; (3)设,为数列的前项和,求证:。