若,函数的图象和轴恒有公共点,求实数的取值范围.
一企业生产的某产品在不做电视广告的前提下,每天销售量为b吨.经市场调查后得到如下规律:若对产品进行电视广告的宣传,每天的销售量S(吨)与电视广告每天的播放量n(次)的关系可用如图所示的程序框图来体现.(1)试写出该产品每天的销售量S(吨)关于电视广告每天的播放量n(次)的函数关系式;(2)要使该产品每天的销售量比不做电视广告时的销售量至少增加90%,则每天电视广告的播放量至少需多少次?
给定两个命题,:对任意实数都有恒成立;:关于的方程有实数根;如果为真,为假,求实数的取值范围.
已知(1) 求函数上的最小值;(2) 若对一切恒成立,求实数的取值范围;(3) 证明:对一切,都有成立.
已知中心在原点的双曲线的一个焦点是,一条渐近线的方程是.(1)求双曲线的方程;(2)若以为斜率的直线与双曲线相交于两个不同的点,且线段的垂直平分线与两坐标轴围成的三角形的面积为,求的取值范围.
已知数列为公差不为的等差数列,为前项和,和的等差中项为,且.令数列的前项和为.(1)求及;(2)是否存在正整数成等比数列?若存在,求出所有的的值;若不存在,请说明理由.