在东西方向直线延伸的湖岸上有一港口O,一艘机艇以40km/h的速度从O港出发,先沿东偏北的某个方向直线前进到达A处,然后改向正北方向航行,总共航行30分钟因机器出现故障而停在湖里的P处,由于营救人员不知该机艇的最初航向及何时改变的航向,故无法确定机艇停泊的准确位置,试划定一个最佳的弓形营救区域(用图形表示),并说明你的理由.
在极坐标系中,圆C的方程为ρ=2sin,以极点为坐标原点、极轴为x轴正半轴建立平面直角坐标系,直线l的参数方程为(t为参数),判断直线l和圆C的位置关系.
在平面直角坐标系xOy中,直线l的参数方程为(t为参数),曲线C的参数方程为(θ为参数),试求直线l与曲线C的普通方程,并求出它们的公共点的坐标.
在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcosθ=4的直线与曲线(t为参数)相交于A、B两点,求|AB|.
在平面直角坐标系xOy中,若l:(t为参数)过椭圆C:(φ为参数)的右顶点,求常数a的值.
在平面直角坐标系xOy中,曲线C1和C2的参数方程分别为和(t为参数),求曲线C1和C2的交点坐标.