如图,在四棱锥中,底面是正方形,底面,, 点是的中点,,且交于点 . (I)求证:平面; (II)求二面角的余弦值大小; (III)求证:平面⊥平面.
如图⑴在直角梯形PDCB中,PD∥CB,CD⊥PD,PD=6,BC=3,DC=,A是线段PD的中点,E是线段AB的中点;如图⑵,沿AB把平面PAB折起,使二面角P-CD-B成45角.⑴求证PA⊥平面ABCD;⑵求平面PEC和平面PAD所成的锐二面角的大小.
已知向量且,函数(1)求函数的最小正周期及单调递增区间;(2)若,分别求及的值
已知函数。(1)是否存在实数,使得处取极值?试证明你的结论;(2)若上是减函数,求实数的取值范围。
已知数列的首项为(1)若,求证:数列是等比数列;(2)若,求数列的前项和.
如图,三棱锥中,底面,,,点、分别是、的中点. (1)求证:⊥平面;(2)求二面角的余弦值。