设是平面上的两个向量,且互相垂直.(1)求λ的值;(2)若求的值.
(本小题满分13分) 已知角的顶点在原点,始边与轴的正半轴重合,终边经过点. (Ⅰ)求的值; (Ⅱ)若函数, 求函数在区间上的取值范围.
已知椭圆C:,在曲线C上是否存在不同两点A、B关于直线(m为常数)对称?若存在,求出满足的条件;若不存在,说明理由。
如图,直线与抛物线交于两点,与轴相交于点,且. (1)求证:点的坐标为; (2)求证:; (3)求的面积的最小值.
已知椭圆的对称轴在坐标轴上,短轴的一个端点与两个焦点组成一个等边三角形, (1)求椭圆的离心率; (2)若焦点到同侧顶点的距离为,求椭圆的方程.
已知抛物线,焦点为F,顶点为O,点P在抛物线上移动,Q是OP的中点,M是FQ的中点,求点M的轨迹方程.