设是平面上的两个向量,且互相垂直.(1)求λ的值;(2)若求的值.
如图,三棱锥P-ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分线段PC,且分别交AC、PC于D、E两点,又PB=BC,PA=AB。 (1)求证:PC⊥平面BDE; (2)若点Q是线段PA上任一点,判断BD、DQ的位置关系,并证明你的结论; (3)若AB=2,求三棱锥B-CED的体积
为了迎接省运会,为了降低能源损耗,鹰潭市体育馆的外墙需要建造隔热层.体育馆要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和. (1)求的值及的表达式; (2)隔热层修建多厚时,总费用达到最小,并求最小值
在△ABC中,内角A,B,C所对边长分别为,,,. (1)求的最大值及的取值范围; (2)求函数的最大值和最小值.
已知 (I)a=2时,求和的公共点个数; (II)a为何值时,的公共点个数恰为两个。
已知椭圆的右焦点为F2(1,0),点在椭圆上。 (I)求椭圆方程; (II)点在圆上,M在第一象限,过M作圆的切线交椭圆于P、Q两点,问|F2P|+|F2Q|+|PQ|是否为定值?如果是,求出定值,如不是,说明理由。