已知抛物线,直线与C交于A,B两点,O为坐标原点。(1)当,且直线过抛物线C的焦点时,求的值;(2)当直线OA,OB的倾斜角之和为45°时,求,之间满足的关系式,并证明直线过定点。
已知的最小正周期为.(1)当时,求函数的最小值;(2)在,若,且,求的值.
在个实数组成的行列数表中,先将第一行的所有空格依次填上,,,再将首项为公比为的数列依次填入第一列的空格内,然后按照“任意一格的数是它上面一格的数与它左边一格的数之和”的规律填写其它空格
(1)设第2行的数依次为.试用表示的值;(2)设第3行的数依次为,记为数列.①求数列的通项;②能否找到的值使数列的前项()成等比数列?若能找到,的值是多少?若不能找到,说明理由.
已知椭圆的离心率,长轴的左右端点分别为,.(1)求椭圆的方程;(2)设动直线与曲线有且只有一个公共点,且与直线相交于点.求证:以为直径的圆过定点.
已知函数,(其中常数)(1)当时,求曲线在处的切线方程;(2)若存在实数使得不等式成立,求的取值范围.
如图在四棱锥中,底面是矩形,平面,,点是中点,点是边上的任意一点.(1)当点为边的中点时,判断与平面的位置关系,并加以证明;(2)证明:无论点在边的何处,都有;(3)求三棱锥的体积.