设和是函数的两个极值点,其中,.(1)若曲线在点处的切线垂直于轴,求实数的值;(2)求的取值范围;(3)若,求的最大值(是自然对数的底数).
本题共有3个小题,第1小题满分4分,第2小题满分6分、第3小题满分6分. 设,常数,定义运算“”:,定义运算“”:;对于两点、,定义. (1)若,求动点的轨迹; (2)已知直线与(1)中轨迹交于、两点,若,试求的值; (3)在(2)中条件下,若直线不过原点且与轴交于点S,与轴交于点T,并且与(1)中轨迹交于不同两点P、Q , 试求的取值范围.
本题共有2个小题,第1小题满分6分,第2小题满分10分. 某火山喷发停止后,为测量的需要,设距离喷口中心米内的圆环面为第区、米至米的圆环面为第区、……、第米至米的圆环面为第区,…,现测得第区火山灰平均每平方米为1000千克、第区每平方米的平均重量较第区减少、第区较第区又减少,以此类推,求: (1)离火山口1225米处的圆环面平均每平方米火山灰重量(结果精确到1千克)? (2)第几区内的火山灰总重量最大?
本题共有2个小题,每小题满分各7分. 如图,在四棱锥中,底面为直角梯形,,垂直于底面,,分别为的中点. (1)求证:; (2)求与平面所成的角.
本题共有2个小题,第1小题满分8分,第2小题满分6分. 已知函数, . (1)若,求函数的值; (2)求函数的值域.
(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分8分,第3小题满分7分. 已知抛物线(且为常数),为其焦点. (1)写出焦点的坐标; (2)过点的直线与抛物线相交于两点,且,求直线的斜率; (3)若线段是过抛物线焦点的两条动弦,且满足,如图所示.求四边形面积的最小值.