如图,在四棱锥P-ABCD中,底面ABCD是矩形,M、N分别为PA、BC的中点,PD⊥平面ABCD,且PD=AD=,CD=1(1)证明:MN∥平面PCD;(2)证明:MC⊥BD;(3)求二面角A—PB—D的余弦值。
(本小题满分14分)已知函数.(Ⅰ)若曲线在和处的切线互相平行,求的值;(Ⅱ)求的单调区间;(Ⅲ)设,若对任意,均存在,使得,求的取值范围.
(本小题满分13分)已知椭圆()的右焦点为,离心率为.(Ⅰ)若,求椭圆的方程;(Ⅱ)设直线与椭圆相交于,两点,分别为线段的中点. 若坐标原点在以为直径的圆上,且,求的取值范围.
(本小题满分13分)一个袋中装有个形状大小完全相同的小球,球的编号分别为.(Ⅰ)若从袋中每次随机抽取1个球,有放回的抽取2次,求取出的两个球编号之和为6的概率;(Ⅱ)若从袋中每次随机抽取个球,有放回的抽取3次,求恰有次抽到号球的概率;(Ⅲ)若一次从袋中随机抽取个球,记球的最大编号为,求随机变量的分布列.
(本小题满分13分)如图,在三棱柱中,侧面,均为正方形,∠,点是棱的中点.(Ⅰ)求证:⊥平面;(Ⅱ)求证:平面;(Ⅲ)求二面角的余弦值.
(本小题满分13分)已知函数.(Ⅰ)若点在角的终边上,求的值; (Ⅱ)若,求的值域.