已知双曲线的离心率e=2,A,B为双曲线上两点,线段AB的垂直平分线为①求双曲线C经过二、四象限的渐近线的倾斜角②试判断在椭圆C的长轴上是否存在一定点N(a,0),使椭圆上的动点M满足的最小值为3,若存在求出所有可能的a值,若不存在说明理由.
在中,角A,B,C所对的边分别为a,b,c,已知. (1)当,且的面积为时,求a的值; (2)当时,求的值.
某中学从高中三个年级选派4名教师和20名学生去当文明交通宣传志愿者,20名学生的名额分配为高一12人,高二6人,高三2人. (1)若从20名学生中选出3人做为组长,求他们中恰好有1人是高一年级学生的概率; (2)若将4名教师随机安排到三个年级(假设每名教师加入各年级是等可能的,且各位教师的选择是相互独立的),记安排到高一年级的教师人数为X,求随机变量X的分布列和数学期望.
已知函数. (1)求的最小正周期和最小值; (2)若,且,求的值.
已知函数的图像过坐标原点,且在点处的切线的斜率是. (1)求实数的值; (2)求在区间上的最大值; (3)对任意给定的正实数,曲线上是否存在两点,使得是以为直角顶点的直角三角形,且此三角形斜边的中点在轴上?请说明理由.
已知动圆与直线相切且与圆:外切。 (1)求圆心的轨迹方程; (2)过定点作直线交轨迹于两点,是点关于坐标原点的对称点,求证:;