已知函数,(其中且)。(Ⅰ)求函数的定义域;(Ⅱ)判断函数的奇偶性并给出证明;(Ⅲ)若时,函数的值域是,求实数的值。
(本小题满分10分)选修4-4:坐标系与参数方程已知极坐标的极点在平面直角坐标系的原点处,极轴与轴的正半轴重合,且长度单位相同.圆的参数方程为(为参数),点的极坐标为. (1)化圆的参数方程为极坐标方程;(2)若点是圆上的任意一点, 求,两点间距离的最小值.
(本小题满分10分)选修4—1: 几何证明选讲如图,直线经过⊙O上一点,且,,⊙O交直线于.(1)求证:直线是⊙O的切线;(2)若⊙O的半径为3,求的长.
已知函数,其中常数 .(1)当时,求函数的极大值;(2)试讨论在区间上的单调性;(3)当时,曲线上总存在相异两点,,使得曲线在点处的切线互相平行,求的取值范围.
如图,在长方体 中,为中点.(1)求证:;(2)在棱上是否存在一点,使得平面若存在,求的长;若不存在,说明理由.
数列满足(1)证明:数列是等差数列; (2)求数列的通项公式;(3)设,求数列的前项和。