给出定义在(0,+∞)上的三个函数:,,,已知在x=1处取极值.(Ⅰ)确定函数h(x)的单调性;(Ⅱ)求证:当时,恒有成立;(Ⅲ)把函数h(x)的图象向上平移6个单位得到函数h1(x)的图象,试确定函数y=g(x)-h1(x)的零点个数,并说明理由.
已知f(x)=x+,h(x)=,设F(x)=f(x)-h(x),求F(x)的单调区间与极值.
已知a,b为常数,且a≠0,函数f(x)=-ax+b +axln x,f(e)=2. ①求b;②求函数f(x)的单调区间.
若函数f(x)=ax3-x2+x-5在(-∞,+∞)上单调递增,求a的取值范围.
求下列函数的单调区间. (1)f(x)=x3-x;(2)y=ex-x+1.
求过点(2,0)且与曲线y=x3相切的直线方程.