某研究机构准备举行一次数学新课程研讨会,共邀请50名一线教师参加,使用不同版本教材的教师人数如下表所示:
(Ⅰ)从这50名教师中随机选出2名,求2人所使用版本相同的概率;(Ⅱ)若随机选出2名使用人教版的教师发言,设使用人教A版的教师人数为,求随机变量的分布列和数学期望。
已知函数满足,,且当时,. (1)证明:函数是周期函数;(2)若,求的值.
已知函数. (Ⅰ)求的解集; (Ⅱ)设函数,若对任意的都成立,求的取值范围.
在极坐标系中,为极点,点(2,),(). (Ⅰ)求经过,,的圆的极坐标方程; (Ⅱ)以极点为坐标原点,极轴为轴的正半轴建立平面直角坐标系,圆的参数方程为是参数,为半径),若圆与圆相切,求半径的值.
如图,是圆内两弦和的交点,过延长线上一点作圆的切线,为切点,已知.求证: (Ⅰ)∽; (Ⅱ)∥.
已知函数。 (Ⅰ)若曲线与在公共点处有相同的切线,求实数的值; (Ⅱ)若,求方程在区间内实根的个数(为自然对数的底数).