如图,已知是半径为,圆心角为的扇形,是扇形弧上的动点,是扇形的内接矩形.记,求当角取何值时,矩形的面积最大?并求出这个最大面积.
已知函数是定义在上的偶函数,且时,。 (Ⅰ)求的值; (Ⅱ)求函数的值域; (Ⅲ)设函数的定义域为集合,若,求实数的取值范围。
已知方程组的解集是{},且{}是方程x2+()x+=0的解集的一个真子集; (1)求实数、的值; (2)求方程x2+()x+=0解集的所有真子集.
附加题 设是正实数,且。 证明:
已知函数 (1)求函数的单调区间和最大值; (2)若恒成立,求的取值范围; (3)证明:①在上恒成立; ②
图中竖直线段和斜线段都表示通道,并且在交点处相遇,若竖直线段有一条的为第一层,有两条的为第二层,以此类推,竖直线段有条的为第层,每一层的竖直通道从左到右分别称为第1通道、第2通道,……,现在有一个小球从入口向下(只能向下,不能向上)运动,小球在每个交点处向左到达下一层或者向右到达下一层的可能性是相同的。小球到达第层第通道的不同路径数称为,如小球到达第二层第1通道和第二层第2通道的路径都只有一种情况,因此,,。 求:(1),,; (2),以及小球到达第5层第2通道的概率; (3)猜想,并证明; (4)猜想(不用证明)。