直角坐标系中,O为坐标原点,设直线经过点,且与轴交于点F(2,0)。(I)求直线的方程;(II)如果一个椭圆经过点P,且以点F为它的一个焦点,求椭圆的标准方程。
设函数的定义域是R,对于任意实数,恒有,且当时,.(Ⅰ)求证:,且当时,有;(Ⅱ)判断在R上的单调性;(Ⅲ)设集合,集合,若,求的取值范围.
设函数f(x)=x2+(lga+2)x+lgb,g(x)=2x+2,若f(-1)=0,且对一切实数x,不等式f(x)≥g(x)恒成立;(Ⅰ)(本问5分)求实数a、b的值;(Ⅱ)(本问7分)设F(x)=f(x)-g(x),数列{an}满足关系an=F(n),证明:
已知,,3].(1)求f(x); (2)求; (3)在f(x)与的公共定义域上,解不等式f(x)>+.
设a>0,函数f(x)=-ax在[1,+∞)上是单调函数.(1)求实数a的取值范围;(2)设≥1,f(x)≥1,且f(f())=,求证:f()=.
已知函数(其中且)(I)求函数f(x)的反函数(II)设,求函数g(x)最小值及相应的x值;(III)若不等式对于区间上的每一个x值都成立,求实数m的取值范围。