设函数,.⑴当时,求函数图象上的点到直线距离的最小值;⑵是否存在正实数,使对一切正实数都成立?若存在,求出的取值范围;若不存在,请说明理由.
(本小题满分10分)在平面直角坐标系xOy中,已知抛物 的准线方程为 过点M(0,-2)作抛物线的切线MA,切点为A(异于点O).直线过点M与抛物线交于两点B,C,与直线OA交于点N. (1)求抛物线的方程; (2)试问: 的值是否为定值?若是,求出定值;若不是,说明理由。
选修4-5:不等式选讲(本小题满分10分) 设实数x,y,z满足求的最小值,并求此时x,y,z的值
(选修4-4:坐标系与参数方程) 在极坐标系中,求圆的圆心到直线的距离.
选修4-2:矩阵与变换(本小题满分10分) 已知 ,矩阵所对应的变换 将直线 变换为自身,求a,b的值。
选修4—1:几何证明选讲 已知AB是圆O的直径,P是上半圆上的任意一点,PC是的平分线,是下半圆的中点. 求证:直线PC经过点.