在一次由三人参加的围棋对抗赛中,甲胜乙的概率为0.4,乙胜丙的概率为0.5,丙胜甲的概率为0.6,比赛按以下规则进行;第一局:甲对乙;第二局:第一局胜者对丙;第三局:第二局胜者对第一局败者;第四局:第三局胜者对第二局败者,求:(1)乙连胜四局的概率;(2)丙连胜三局的概率.
在直角坐标平面上有一点列,对一切正整数,点位于函数的图象上,且的横坐标构成以为首项,为公差的等差数列。⑴求点的坐标;⑵设抛物线列中的每一条的对称轴都垂直于轴,第条抛物线的顶点为,且过点,记与数列相切于的直线的斜率为,求:。⑶设,等差数列的任一项,其中是中的最大数,,求的通项公式。
(本小题12分)如图,四面体ABCD中,O、E分别是BD、BC的中点,(I)求证:平面BCD;(II)求异面直线AB与CD所成角的大小;(III)求点E到平面ACD的距离。
(本小题满分14分)已知数列满足,是实数).(1)若,,求通项;(2)若,设数列的前项和当时为,当时为,求证:.
(本小题满分12分)如图,以原点O为顶点,以y轴为对称轴的抛物线E的焦点为F(0,1),点M是直线上任意一点,过点M引抛物线E的两条切线分别交x轴于点S , T,切点分别为B、A。(1)求抛物线E的方程;(2)求证:点S,T在以FM为直径的圆上;(3)当点M在直线上移动时,直线AB恒过焦点F,求的值。
(本小题满分12分)设函数f(x)的定义域为R,若|f(x)|≤|x|对任意的实数x均成立,则称函数f(x)为函数。(1)试判断函数= =中哪些是函数,并说明理由;(2)求证:若a>1,则函数f(x)=ln(x2+a)-lna是函数。