袋里装有30个球,每个球上都记有1到30的一个号码, 设号码为的球的重量为(克). 这些球以等可能性(不受重量, 号码的影响)从袋里取出.(Ⅰ)如果任意取出1球, 求其号码是3的倍数的概率.(Ⅱ)如果任意取出1球, 求重量不大于号其码的概率;(Ⅲ)如果同时任意取出2球, 试求它们重量相同的概率.
如图,四棱锥的底面是边长为的菱形,,平面,.(1)求直线PB与平面PDC所成的角的正切值;(2)求二面角A-PB-D的大小.
(本小题满分12分)已知,写出用表示的关系等式,并证明这个关系等式.
(本小题满分10分)如图,在直三棱柱中,,.棱上有两个动点E,F,且EF =" a" (a为常数).(Ⅰ)在平面ABC内确定一条直线,使该直线与直线CE垂直; (Ⅱ)判断三棱锥B—CEF的体积是否为定值.若是定值,求出这个三棱锥的体积;若不是定值,说明理由.
(本小题满分10分)记等差数列{}的前n项和为,已知,.(Ⅰ)求数列{}的通项公式;(Ⅱ)令,求数列{}的前项和.
(本小题满分10分)一种放射性元素,最初的质量为500g,按每年10﹪衰减.(Ⅰ)求t年后,这种放射性元素质量ω的表达式;(Ⅱ)由求出的函数表达式,求这种放射性元素的半衰期(剩留量为原来的一半所需要的时间).(精确到0.1;参考数据:)