(本小题12分)已知直线l与两坐标轴围成的三角形的面积为3, 且过定点A(-3,4). 求直线l的方程.
已知函数()均在函数的图象上。(Ⅰ)求数列的通项公式;(Ⅱ)令证明:
(本小题满分14分)已知函数,(1)求函数的单调区间,并判断是否有极值;(2)若对任意的,恒有成立,求的取值范围;(3)证明:().
(本小题满分12分)设是圆上的动点,点是点在轴上的投影,为上一点,且.(1)求证:点的轨迹是椭圆;(2)设(Ⅰ)中椭圆的左焦点为,过点的直线交椭圆于两点,为线段的中点,当三角形(为坐标原点)的面积最大时,求直线的方程.
(本小题满分1 2分)如图,梯形中,于,于,且,现将,分别沿与翻折,使点与点重合.(1)设面与面相交于直线,求证:;(2)试类比求解三角形的内切圆(与三角形各边都相切)半径的方法,求出四棱锥的内切球(与四棱锥各个面都相切)的半径.
(本小题满分12分)设是等差数列,是各项都为正数的等比数列,且,,.(1)求,的通项公式;(2)求数列的前项和.