(本题12分)在锐角△ABC中,a,b,c分别为角A、B、C所对的边,且a=2csinA,(1)确定角C的大小;(2)若c=,且△ABC的面积为,求a+b的值。
已知函数的定义域为,值域为.试求函数()的最小正周期和最值.
已知椭圆的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为。(Ⅰ)求椭圆的方程;(Ⅱ)已知动直线与椭圆相交于、两点。①若线段中点的横坐标为,求斜率的值;②已知点,求证:为定值
若是函数的两个极值点。(Ⅰ)若,求函数的解析式;(Ⅱ)若,求的最大值。
如图,已知直四棱柱的底面是直角梯形,,,,分别是棱,上的动点,且,,.(Ⅰ)证明:无论点怎样运动,四边形都为矩形;(Ⅱ)当时,求几何体的体积。
已知数列是各项均为正数的等比数列,且,。(I)求数列的通项公式;(II)设求数列的前n项和Sn。