以椭圆+y2=1(a>1)短轴的一个端点B(0,1)为直角顶点作椭圆的内接等腰直角三角形,问这样的直角三角形是否存在?如果存在,请说明理由,并判断最多能作出几个这样的三角形;如果不存在,请说明理由.
(本小题满分14分)已知函数.(Ⅰ)当时,如果函数仅有一个零点,求实数的取值范围;(Ⅱ)当时,试比较与1的大小;(Ⅲ)求证:.
(本小题满分12分)直线与椭圆交于,两点,已知,,若且椭圆的离心率,又椭圆经过点,为坐标原点.(Ⅰ)求椭圆的方程;(Ⅱ)若直线过椭圆的焦点(为半焦距),求直线的斜率的值;(Ⅲ)试问:的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
(本小题满分12分)已知数列的前项和.(Ⅰ) 求数列{}的通项公式;(Ⅱ)设,求数列{}的前项和.
(本小题满分12分)如图,是圆的直径,点在圆上,,交于点,平面,,.(Ⅰ)证明:;(Ⅱ)求平面与平面所成的锐二面角的余弦值.
.(本小题满分12分)在一次数学考试中,第21题和第22题为选做题. 规定每位考生必须且只须在其中选做一题. 设4名考生选做这两题的可能性均为.(Ⅰ)求其中甲、乙二名学生选做同一道题的概率;(Ⅱ)设这4名考生中选做第22题的学生个数为,求的概率分布及数学期望.