(本小题满分12分) 已知函数(1)求的单调区间;(2)设,若对任意,均存在,使得,求实数的取值范围.
用反证法证明:如果,那么。
已知:通过观察上述两等式的规律,请你写出一般性的命题,并给出的证明.
已知,直线,为平面上的动点,过点作的垂线,垂足为点,且.(Ⅰ)求动点的轨迹曲线的方程;(Ⅱ)设动直线与曲线相切于点,且与直线相交于点,试问:在轴上是否存在一个定点,使得以为直径的圆恒过此定点?若存在,求出定点的坐标;若不存在,说明理由.
已知函数.(Ⅰ)试判断函数的单调性,并说明理由;(Ⅱ)若恒成立,求实数的取值范围.
如图,已知空间四边形中,,是的中点. (Ⅰ)求证:平面CDE;(Ⅱ)若G为的重心,试在线段AE上确定一点F,使得GF//平面CDE.