在平面直角坐标系中,若,且,(1)求动点的轨迹的方程;(2)已知定点,若斜率为的直线过点并与轨迹交于不同的两点,且对于轨迹上任意一点,都存在,使得成立,试求出满足条件的实数的值。
(本小题满分12分)二次函数f(x)满足且f(0)=1.(1)求f(x)的解析式;(2)在区间上,y= f(x)的图象恒在y=2x+m的图象上方,试确定实数m的范围.
(本小题满分12分)判断y=1-2x3在(-)上的单调性,并用定义证明。
(本小题满分14分)设二次函数满足下列条件:①当∈R时,的最小值为0,且f (-1)=f(--1)成立;②当∈(0,5)时,≤≤2+1恒成立。(1)求的值; (2)求的解析式;(3)求最大的实数m(m>1),使得存在实数t,只要当∈时,就有成立。
(本小题满分13分)某出版公司为一本畅销书定价如下:.这里n表示定购书的数量,C(n)是定购n本书所付的钱数(单位:元)(1)有多少个n,会出现买多于n本书比恰好买n本书所花钱少?(2)若一本书的成本价是5元,现有两人来买书,每人至少买1本,两人共买60本,问出版公司至少能赚多少钱?最多能赚多少钱?
(本题满分12分) 已知函数的图象与函数的图象关于点A(0,1)对称.(1)求函数的解析式(2)若=+,且在区间(0,上的值不小于,求实数的取值范围.